The Effect of Various pH Medium on the Secondary Metabollites Production from Trichoderma harzianum T10 to Control Damping Off on Cucumber Seedlings

Nur Chalimah, Loekas Soesanto, Woro Sri Suharti

Abstract


Damping-off is one of the main diseases in cucumber seedlings caused by Pythium sp. Secondary metabolites of Trichoderma harzianum T10 can conduct the control of the disease. The pH of the medium influences the production of secondary metabolites. The research aimed to determine the effective pH medium on production of T. harzianum T10 secondary metabolites, and the effect of the T. harzianum T10 secondary metabolites application in damping-off disease control also to the growth of cucumber seedling. The research was consist of two steps; 1) in vitro assay with various pH levels 5; 3; 3.5; 4; 4.5; 5.5; 6; 6.5; and 7, 2) In planta treatments consisted of control, fungicide (Mancozeb), secondary metabolites in pH 5 and 5.5 with the concentration of 5, 10 and 15% each. The research showed that: 1) the effective pH medium for the production of T. harzianum T10 secondary metabolites was 5 and 5.5. 2) application of the T. harzianum T10 secondary metabolites on pH 5 and 5.5 with a concentration of 5, 10, and 15% could decrease the disease incidence and support cucumber seedling growth.

Keywords


Cucumber; pH Medium; Secondary Metabolites; T. harzianum;

Full Text:

PDF

References


Bidadi, H., Yamaguchi, S., Asahina, M., & Satoh, S. (2010). Effects of shoot-applied gibberellin/gibberellin-biosynthesis inhibitors on root growth and expression of gibberellin biosynthesis genes in Arabidopsis thaliana. Plant Root, 4, 4-11.

Contreras-Cornejo, H. A., Macías-Rodríguez, L., del-Val, E., & Larsen, J. (2016). Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS microbiology ecology, 92(4), fiw036.

Gullino, M. L., Tinivella, F., Garibaldi, A., Kemmitt, G. M., Bacci, L., & Sheppard, B. (2010). Mancozeb: past, present, and future. Plant Disease, 94(9), 1076-1087.

Halifu, S., Deng, X., Song, X., & Song, R. (2019). Effects of Two Trichoderma Strains on Plant Growth, Rhizosphere Soil Nutrients, and Fungal Community of Pinus sylvestris var. mongolica Annual Seedlings. Forests, 10(9), 758.

Halo, B. A., Al-Yahyai, R. A., Maharachchikumbura, S. S., & Al-Sadi, A. M. (2019). Talaromyces variabilis interferes with Pythium aphanidermatum growth and suppresses Pythium-induced damping-off of cucumbers and tomatoes. Scientific reports, 9(1), 1-10.

Hamid, R., Khan, M. A., Ahmad, M., Ahmad, M. M., Abdin, M. Z., Musarrat, J., & Javed, S. (2013). Chitinases: an update. Journal of pharmacy & bioallied sciences, 5(1), 21.

Haneefat, O. E., Sobowale, A. A., Ilusanya, O. A. F., & Feyisola, R. T. (2012). The influence of Glomus mosseae and Trichoderma harzianum on phytohormone production in soybeans (Glycine max L. Merr) planted in sterilized and unsterilized soils. Journal of Experimental Agriculture International, 516-524.

Islam, W. (2018). Plant disease epidemiology: disease triangle and forecasting mechanisms in highlights. Hosts and Viruses, 5(1), 7-11.

Kamala, T., & Indira, S. (2011). Evaluation of indigenous Trichoderma isolates from Manipur as biocontrol agent against Pythium aphanidermatum on common beans. 3 Biotech, 1(4), 217-225.

Li, M. F., Li, G. H., & Zhang, K. Q. (2019). Non-volatile metabolites from Trichoderma spp. Metabolites 9: 58.

Marques, E., Martins, I., & Mello, S. C. M. D. (2018). Antifungal potential of crude extracts of Trichoderma spp. Biota Neotropica, 18(1).

Naglot, A., Goswami, S., Rahman, I., Shrimali, D. D., Yadav, K. K., Gupta, V. K., ... & Veer, V. (2015). Antagonistic potential of native Trichoderma viride strain against potent tea fungal pathogens in North East India. The plant pathology journal, 31(3), 278.

Naher, L., Yusuf, U. K., Ismail, A., & Hossain, K. (2014). Trichoderma spp.: a biocontrol agent for sustainable management of plant diseases. Pak. J. Bot, 46(4), 1489-1493.

Ortuño, N., Castillo, J. A., Miranda, C., Claros, M., & Soto, X. (2017). The use of secondary metabolites extracted from Trichoderma for plant growth promotion in the Andean highlands. Renewable Agriculture and Food Systems, 32(4), 366-375.

Robinson, P. K. (2015). Correction: Enzymes: principles and biotechnological applications. Essays in Biochemistry, 59, 75-75.

Schroeder, K. L., Martin, F. N., de Cock, A. W., Lévesque, C. A., Spies, C. F., Okubara, P. A., & Paulitz, T. C. (2013). Molecular detection and quantification of Pythium species: evolving taxonomy, new tools, and challenges. Plant Disease, 97(1), 4-20.

Speckbacher, V., & Zeilinger, S. (2018). Secondary metabolites of mycoparasitic fungi. Secondary Metabolites: Sources and Applications, 37.

Soares, V. N., Villela, F. A., Radke, A. K., Rodrigues, H. C. S., Gonçalves, V. P., & Meneghello, G. E. (2019). Influence of physiological and health quality on the vigor of cucumber seeds. Arquivos do Instituto Biológico, 86.

Suada, I. K. (2017). The potential of various indigenous Trichoderma spp. to suppress Plasmodiophora brassicae the pathogen of clubroot disease on cabbage. Biodiversitas Journal of Biological Diversity, 18(4), 1424-1429.

Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Woo, S. L., Nigro, M., Marra, R., ... & Manganiello, G. (2014). Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal, 8(1).




DOI: http://dx.doi.org/10.33089/jthort.v3i2.52

Article Metrics

 Abstract Views : 166 times
 PDF Downloaded : 45 times

Refbacks

  • There are currently no refbacks.