Application of Bio P60 and Bio T10 Alone or in Combination Against Stem Rot of Pakcoy
Abstract
Keywords
Full Text:
PDFReferences
Akhtar, J., Singh, B., Kandan, A., Kumar, P., Maurya, A. K., & Dubey, S. C. (2017). Interception of pathogens during quarantine processing: An effort towards safe import of oilseed and vegetable Brassicas germplasm in India. Journal of Oilseed Brassica 8 (2): 120-130.
Amin, R., Sarker, B. C., Adhikary, S. K., Sultana, S., & Zubair, T. (2013). Effect of some botanical extracts and cow’s urine on Sclerotium rolfsii causal agent of foot and root rot of betel vine. The International Journal of Engineering and Science (IJES) 2(9): 77-82.
Ardebili, Z. O., Ardebil, N. O., & Hamdi, S. M. M. (2011). Physiological effects of Pseudomonas fluorescens CHAO on tomato (Lycopersicon esculentum Mill) plants and its possible impact on Fusarium oxysporum f.sp lycopersici. Aus. J. Crop Sci. 5(12):1631–1638.
Badan Pusat Statistik dan Direktorat Jendral. (2015). Produksi Pakcoy. Kementrian Pertanian Republik Indonesia.
Bansal, R., & Mukherjee, P. K. (2016). Identification of novel gene clusters for secondary metabolism in Trichoderma genomes. Microbiology 85(2): 185–190. Doi: 10.1134/S002626171602003X.
Bhuiyan, M.A.H.B., Rahman, M. T., & Bhuiyan, K. A. (2012). In vitro screening of fungicides and antagonists against Sclerotium rolfsii. African Journal of Biotechnology 11(82): 14822-14827. Doi: 10.5897/AJB12.1463.
Chandrashekara, K.N., Kumar, M. K. P.,, & Saroja, S. (2012). Aggressiveness of Ralstonia solanacearum isolates on tomato. J of Experimenmtal Sciences 3 (9): 5-9.
Chaurasia, S., Chaurasia, A. K., Chaurasia, S., & Chaurasia, S. (2013). Factors affecting the growth and sclerotial production in Sclerotium rolfsii causing foot rot of brinjal. Indian Journal of Fundamental and Applied Life Sciences 3(2): 73-84.
Chu, M., & Seltzer, T. F. (2010). Myxedema coma induced by ingestion of raw bok choy. N Engl J Med. 362(20): 1945-6. Doi: 10.1056/NEJMc0911005.
Di Noia, J. (2014). Defining powerhouse fruits and vegetables: A nutrient density approach. Preventing Chronic Disease 11: 130390. DOI: 10.5888/pcd11.130390.
Dorjey, S., Dolkar, D., & Sharma, R. (2017). Plant Growth Promoting Rhizobacteria Pseudomonas: A Review. Int. J. Curr. Microbiol. App. Sci. 6(7): 1335-1344.
El-Mohamedy, R.S.R., Jabnoun-Khiareddine, H., & Daami-Remadi, M. (2014). Control of root rot diseases of tomato plants caused by Fusarium solani, Rhizoctonia solani and Sclerotium rolfsii using different chemical plant resistance inducers. Tunisian Journal of Plant Protection 9: 45-55.
Hadar, Y. (2011). Suppressive compost: when plant pathology met microbial ecology. Phytoparasitica 39(4): 311–314. Doi: 10.1007/s12600-011-0177-1.
Hafsah, S., Rahayu, A., Syamsuddin, S., & Firdaus, F. (2019). Induced Resistance against Fusarium Wilt Disease caused by Fusarium oxysporum in Local Red Peppers (Capsicum annum L.) in Aceh using Rhizobacteria Isolates. Journal of Tropical Horticulture, 2(1), 6-10.
Hartati, S.Y. & Nuri. 2014. Teknik inokulasi Ralstonia solanacearum untuk pengujian ketahanan nilam terhadap penyakit layu. Bul. Littro. 25 (2) : 127-135.
Heydari, A. & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10, 273-290. DOI: 10.3923/jbs.2010.273.290.
Jambhulkar, P.P., Sharma, P., Manokaran, R., Lakshman, D. K., Rokadia, P., Jambhulkar, N. (2018). Assessing synergism of combined applications of Trichoderma harzianum and Pseudomonas fluorescens to control blast and bacterial leaf blight of rice. European Journal of Plant Pathology 152(3): 747–757. Doi: 10.1007/s10658-018-1519-3.
Junsopa, C., Jogloy, S., Saksirirat, W., Songsri, P., Kesmala, T., Shew, B. B., & Patanothai, A. (2016). Inoculation with Sclerotium rolfsii, cause of stem rot in Jerusalem artichoke, under field conditions. European Journal of Plant Pathology 146(1): 47–58. Doi: 10.1007/s10658-016-0890-1.
Kabdwal, B.C., Sharma, R., Tewari, R., Tewari, A. K., Singh, R. P., & Dandona, J. K. (2019). Field efficacy of different combinations of Trichoderma harzianum, Pseudomonas fluorescens, and arbuscular mycorrhiza fungus against the major diseases of tomato in Uttarakhand (India). Egyptian Journal of Biological Pest Control 29:1. Doi: 10.1186/s41938-018-0103-7.
Kator, L., Oche, O. D., & Hosea, Z. Y. (2015). Incidence and severity of Sclerotium rolfsii disease on tomato farms in Chile Island (Makurdi), Benue State, Nigeria. IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS) 8(11): 97-103. Doi: 10.9790/2380-0811297103.
Kumar, M.R., Santhoshi, M. V. M., Krishna, T. G., & Reddy, K. R. (2014a). Cultural and morphological variability Sclerotium rolfsii isolates infecting groundnut and its reaction to some fungicidal. Int. J. Curr. Microbiol. App. Sci. 3(10): 553-561.
Kumar, V., Shahid, M., Srivastava, M., Pandey, S., Singh, A., & Sharma, A. (2014b). Role of secondary metabolites produced by commercial Trichoderma species and their effect against soil-borne pathogens. Biosensors Journal 3:108. Doi: 10.4172/2090-4967.1000108.
Lahre, S.K., Khare, N., Lakpale, N., & Chaliganjewar, S.D. (2012). Efficacy of bio-agents and organic amendments against Sclerotium Rolfsii in chickpea. Journal of Plant Disease Sciences 7 (1): 32-34.
Latifah, A., Kustantinah, & Soesanto, L. (2011). Pemanfaatan beberapa isolat Trichoderma harzianum sebagai agensia pengendalian hayati penyakit layu fusarium pada bawang merah in planta. Eugenia 17(2): 86-95.
Lee, S.W., Lee, S. H., Lan, J. M., Park, K. H., Jang, I. B., & Kim, K. H. (2016). Control of soil-borne pathogens in ginseng cultivation through the use of cultured green manure crop and solarization in greenhouse facilities. Korean Journal of Medicinal Crop Science 24(2): 136-142. Doi: 10.7783/kjmcs.2016.24.2.136.
Li, M.-F., Li, G.-H., & Zhang, K.-Q. (2019). Non-Volatile Metabolites from Trichoderma spp. Metabolites 9(3): 58. Doi: 10.3390/metabo9030058.
Luján, A.M., Gómez, P., & Buckling, A. (2015). Siderophore cooperation of the bacterium Pseudomonas fluorescens in soil. Biol Lett. 11(2): 20140934. Doi: 10.1098/rsbl.2014.0934.
Nahar, M., Rahman, M., Kibria, M., Karim, A., & Miller, S. (2013). Use of tricho-compost and tricho-leachate for management of soil-borne pathogens and production of healthy cabbage seedlings. Bangladesh Journal of Agricultural Research, 37(4): 653-664. Doi: 10.3329/bjar.v37i4.14390.
Neidig, N., Paul, R. J., Scheu, S., & Jousset, A. (2011). Secondary metabolites of Pseudomonas fluorescens CHA0 drive complex non-trophic interactions with bacterivorous nematodes. Microbial Ecology 61(4): 853–859. Doi: 10.1007/s00248-011-9821-z.
Noble, R. (2011). Risks and benefits of soil amendment with composts in relation to plant pathogens. Australasian Plant Pathology 40(2): 157–167. Doi: 10.1007/s13313-010-0025-7.
Paramasivan, M., Mohan, S., Muthukrishnan, N., & Chandrasekaran, A. (2013). Degradation of oxalic acid (OA) producing Sclerotium rolfsii (Sacc.) by organic biocides. Archives of Phytopathology and Plant Protection 46(3): 357-363. Doi: 10.1080/03235408.2012.738520.
Raj, H. & Sharma, S. D. (2009). Integration of soil solarization and chemical sterilization with beneficial microorganisms for the control of white root rot and growth of nursery apple. Scientia Horticulturae 119(2): 126-131. Doi: 10.1016/j.scienta.2008.07.025.
Rakh R.R., Raut, L., S., Dalvi, S. M., & Manwar, A. V. (2011). Biological control of Sclerotium rolfsii, causing stem rot of groundnut by Pseudomonas cf. monteilii 9. Recent Research in Science and Technology 3(3): 26-34.
Rakholiya, K.B. (2010). Efficacy of fungicides against Trichoderma harzianum and Sclerotium rolfsii. International Journal of Plant Protection 3(2): 406-407.
Reino, J.L., Guerrero, R. F., Hernández-Galán, R., & Collado, I. G. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev. 7: 88-123. DOI:10.1007/s11101-006-9032-2.
Shahid, I., Rizwan, M., Baig, D. N., Saleem, R. S., Malik, K. A., & Mehnaz, S. (2016). Secondary Metabolites production and plant growth promotion by Pseudomonas chlororaphis and P. aurantiaca strains isolated from cactus, cotton, and para grass. J. Microbiol. Biotechnol. 27(3): 480–491. Doi: 10.4014/jmb.1601.01021.
Soesanto, L., Mugiastuti, E., & Rahayuniati, R. F. (2010). Kajian mekanisme antagonis Pseudomonas fluorescens terhadap Fusarium oxysporum pada tanaman tomat in vivo. J. HPT Tropika 10(2): 108-115.
Soesanto, L., Mugiastuti, E., & Rahayuniati, R. F. (2013). Aplication of Pseudomonas fluorescens P60 liquid formulation to suppress viral diseases on red chili. Jurnal Fitopatologi Indonesia 9: 179-185. Doi: 10.14692/jfi.9.6.179. [In Bahasa Indonesia].
Soesanto, L., Mugiastuti, E., & Manan, A. (2019). Raw secondary metabolites of two Trichoderma harzianum isolates towards vacular streak dieback on cocoa seedlings. Pelita Perkebunan 35(1): 22-32.
Songvilay, P., Groenewald, J. Z., Vongphachanh, P., Sayapattha, S., Chittarath, K., Crous, P. W., & Burgess, L. W. (2012). First report of Sclerotium rolfsii in the Lao PDR. Australasian Plant Dis. Notes. Doi: 10.1007/s13314-012-0085-3.
Stolp, H., & Gadkari, D. (1983). Nonpathogenic members of the genus Pseudomonas. In: Starr, M. P., Troper, H. G., Ballows, A., & Schiegel, H. G.. (eds.). The Prokaryotes A Handbook on Habitat, Isolation and Identification of Bacteria. Springer-Verlag. New York.
Shukla, P., Walia, S., Ahluwalia, V., Parmar, B.S., Nair, M.G. (2012). Activity of alkanediol alkanoates against pathogenic plant fungi Rhizoctonia solani and Sclerotium rolfsii. Nat Prod Commun. 7(9): 1219-22.
Thiessen, L.D., & Woodward, J. E. (2012). Diseases of peanut caused by soilborne pathogens in the Southwestern United States. International Scholarly Research Notices Agronomy, Article ID 517905, 9 pages. Doi: 10.5402/2012/517905.
Tran, N. H. (2010). Using Trichoderma species for biological control of plant pathogens in Vietnam. J. ISSAAS. 1 (16) : 17–21.
Trapet, P., Avoscan, L., Klinguer, A., Pateyron, S., Citerne, S., Chervin, C., Mazurier, S., Lemanceau, P., Wendehenne, D., & Besson-Bard, A. (2016). The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron-deficient conditions. Plant Physiol. 171(1): 675-693. Doi: 10.1104/pp.15.01537.
Vinale, F., Flematti, G., Sivasithamparam, K., Lorito, M., Marra, R., Skelton, B. W., & Ghisalberti, E. L. (2009). Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J. Nat. Prod. 72: 2032–2035. DOI: 10.1021/np900548p.
Zachow, C., Grosch, R., & Berg, G. (2011). Impact of biotic and a-biotic parameters on structure and function of microbial communities living on sclerotia of the soil-borne pathogenic fungus Rhizoctonia solani. Appl Soil Ecol. 48(2): 193–200. Doi: 10.1016/j.apsoil.2011.03.006.
DOI: http://dx.doi.org/10.33089/jthort.v2i2.20
Article Metrics
Abstract Views : 684 timesPDF Downloaded : 433 times
Refbacks
- There are currently no refbacks.