Application of Bio P60 and Bio T10 Alone or in Combination Against Stem Rot of Pakcoy

Loekas Soesanto, Atsil Hiban, Woro Sri Suharti


Application of Bio P60 and Bio T10 alone or in combination in suppressing stem rot of pakcoy and on pakcoy growth has been demonstrated. The research was carried out at the Plant Protection Laboratory and Screen House, Faculty of Agriculture, Jenderal Soedirman University. A split-plot design was used with application time (before and after inoculation of Sclerotium rolfsii) as main plot and Bio P60, Bio T10, and Bio P60 + Bio T10) as sub-plot. Observed variables were incubation period, disease intensity, crop height, number of leaves, and crop fresh weight. Results of the research showed that single and combined application of Bio T10 and Bio P60 did not differ in the suppression of stem-end rot in pakcoy. The combination of Bio T10 + Bio P60 was able to control the disease by delaying the incubation period and suppressing the disease intensity respectively by 37.48-39.16% and 54.77-6191% compared to controls. Combined Bio T10 + Bio P60 was able to improve plant height, number of leaves, and fresh weight of plants as 29.99-46.62, 24.39-35.07, and 71,17%, respectively, compared to controls. The results of this study suggest that the raw secondary metabolites of Bio P60 and Bio T10 either alone or in combination could be applied for the prevention or treatment of the diseases in pakcoy.


Bio P60, Bio T10, pakcoy, Sclerotium rolfsii, stem rot

Full Text:



Akhtar, J., Singh, B., Kandan, A., Kumar, P., Maurya, A. K., & Dubey, S. C. (2017). Interception of pathogens during quarantine processing: An effort towards safe import of oilseed and vegetable Brassicas germplasm in India. Journal of Oilseed Brassica 8 (2): 120-130.

Amin, R., Sarker, B. C., Adhikary, S. K., Sultana, S., & Zubair, T. (2013). Effect of some botanical extracts and cow’s urine on Sclerotium rolfsii causal agent of foot and root rot of betel vine. The International Journal of Engineering and Science (IJES) 2(9): 77-82.

Ardebili, Z. O., Ardebil, N. O., & Hamdi, S. M. M. (2011). Physiological effects of Pseudomonas fluorescens CHAO on tomato (Lycopersicon esculentum Mill) plants and its possible impact on Fusarium oxysporum f.sp lycopersici. Aus. J. Crop Sci. 5(12):1631–1638.

Badan Pusat Statistik dan Direktorat Jendral. (2015). Produksi Pakcoy. Kementrian Pertanian Republik Indonesia.

Bansal, R., & Mukherjee, P. K. (2016). Identification of novel gene clusters for secondary metabolism in Trichoderma genomes. Microbiology 85(2): 185–190. Doi: 10.1134/S002626171602003X.

Bhuiyan, M.A.H.B., Rahman, M. T., & Bhuiyan, K. A. (2012). In vitro screening of fungicides and antagonists against Sclerotium rolfsii. African Journal of Biotechnology 11(82): 14822-14827. Doi: 10.5897/AJB12.1463.

Chandrashekara, K.N., Kumar, M. K. P.,, & Saroja, S. (2012). Aggressiveness of Ralstonia solanacearum isolates on tomato. J of Experimenmtal Sciences 3 (9): 5-9.

Chaurasia, S., Chaurasia, A. K., Chaurasia, S., & Chaurasia, S. (2013). Factors affecting the growth and sclerotial production in Sclerotium rolfsii causing foot rot of brinjal. Indian Journal of Fundamental and Applied Life Sciences 3(2): 73-84.

Chu, M., & Seltzer, T. F. (2010). Myxedema coma induced by ingestion of raw bok choy. N Engl J Med. 362(20): 1945-6. Doi: 10.1056/NEJMc0911005.

Di Noia, J. (2014). Defining powerhouse fruits and vegetables: A nutrient density approach. Preventing Chronic Disease 11: 130390. DOI: 10.5888/pcd11.130390.

Dorjey, S., Dolkar, D., & Sharma, R. (2017). Plant Growth Promoting Rhizobacteria Pseudomonas: A Review. Int. J. Curr. Microbiol. App. Sci. 6(7): 1335-1344.

El-Mohamedy, R.S.R., Jabnoun-Khiareddine, H., & Daami-Remadi, M. (2014). Control of root rot diseases of tomato plants caused by Fusarium solani, Rhizoctonia solani and Sclerotium rolfsii using different chemical plant resistance inducers. Tunisian Journal of Plant Protection 9: 45-55.

Hadar, Y. (2011). Suppressive compost: when plant pathology met microbial ecology. Phytoparasitica 39(4): 311–314. Doi: 10.1007/s12600-011-0177-1.

Hafsah, S., Rahayu, A., Syamsuddin, S., & Firdaus, F. (2019). Induced Resistance against Fusarium Wilt Disease caused by Fusarium oxysporum in Local Red Peppers (Capsicum annum L.) in Aceh using Rhizobacteria Isolates. Journal of Tropical Horticulture, 2(1), 6-10.

Hartati, S.Y. & Nuri. 2014. Teknik inokulasi Ralstonia solanacearum untuk pengujian ketahanan nilam terhadap penyakit layu. Bul. Littro. 25 (2) : 127-135.

Heydari, A. & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10, 273-290. DOI: 10.3923/jbs.2010.273.290.

Jambhulkar, P.P., Sharma, P., Manokaran, R., Lakshman, D. K., Rokadia, P., Jambhulkar, N. (2018). Assessing synergism of combined applications of Trichoderma harzianum and Pseudomonas fluorescens to control blast and bacterial leaf blight of rice. European Journal of Plant Pathology 152(3): 747–757. Doi: 10.1007/s10658-018-1519-3.

Junsopa, C., Jogloy, S., Saksirirat, W., Songsri, P., Kesmala, T., Shew, B. B., & Patanothai, A. (2016). Inoculation with Sclerotium rolfsii, cause of stem rot in Jerusalem artichoke, under field conditions. European Journal of Plant Pathology 146(1): 47–58. Doi: 10.1007/s10658-016-0890-1.

Kabdwal, B.C., Sharma, R., Tewari, R., Tewari, A. K., Singh, R. P., & Dandona, J. K. (2019). Field efficacy of different combinations of Trichoderma harzianum, Pseudomonas fluorescens, and arbuscular mycorrhiza fungus against the major diseases of tomato in Uttarakhand (India). Egyptian Journal of Biological Pest Control 29:1. Doi: 10.1186/s41938-018-0103-7.

Kator, L., Oche, O. D., & Hosea, Z. Y. (2015). Incidence and severity of Sclerotium rolfsii disease on tomato farms in Chile Island (Makurdi), Benue State, Nigeria. IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS) 8(11): 97-103. Doi: 10.9790/2380-0811297103.

Kumar, M.R., Santhoshi, M. V. M., Krishna, T. G., & Reddy, K. R. (2014a). Cultural and morphological variability Sclerotium rolfsii isolates infecting groundnut and its reaction to some fungicidal. Int. J. Curr. Microbiol. App. Sci. 3(10): 553-561.

Kumar, V., Shahid, M., Srivastava, M., Pandey, S., Singh, A., & Sharma, A. (2014b). Role of secondary metabolites produced by commercial Trichoderma species and their effect against soil-borne pathogens. Biosensors Journal 3:108. Doi: 10.4172/2090-4967.1000108.

Lahre, S.K., Khare, N., Lakpale, N., & Chaliganjewar, S.D. (2012). Efficacy of bio-agents and organic amendments against Sclerotium Rolfsii in chickpea. Journal of Plant Disease Sciences 7 (1): 32-34.

Latifah, A., Kustantinah, & Soesanto, L. (2011). Pemanfaatan beberapa isolat Trichoderma harzianum sebagai agensia pengendalian hayati penyakit layu fusarium pada bawang merah in planta. Eugenia 17(2): 86-95.

Lee, S.W., Lee, S. H., Lan, J. M., Park, K. H., Jang, I. B., & Kim, K. H. (2016). Control of soil-borne pathogens in ginseng cultivation through the use of cultured green manure crop and solarization in greenhouse facilities. Korean Journal of Medicinal Crop Science 24(2): 136-142. Doi: 10.7783/kjmcs.2016.24.2.136.

Li, M.-F., Li, G.-H., & Zhang, K.-Q. (2019). Non-Volatile Metabolites from Trichoderma spp. Metabolites 9(3): 58. Doi: 10.3390/metabo9030058.

Luján, A.M., Gómez, P., & Buckling, A. (2015). Siderophore cooperation of the bacterium Pseudomonas fluorescens in soil. Biol Lett. 11(2): 20140934. Doi: 10.1098/rsbl.2014.0934.

Nahar, M., Rahman, M., Kibria, M., Karim, A., & Miller, S. (2013). Use of tricho-compost and tricho-leachate for management of soil-borne pathogens and production of healthy cabbage seedlings. Bangladesh Journal of Agricultural Research, 37(4): 653-664. Doi: 10.3329/bjar.v37i4.14390.

Neidig, N., Paul, R. J., Scheu, S., & Jousset, A. (2011). Secondary metabolites of Pseudomonas fluorescens CHA0 drive complex non-trophic interactions with bacterivorous nematodes. Microbial Ecology 61(4): 853–859. Doi: 10.1007/s00248-011-9821-z.

Noble, R. (2011). Risks and benefits of soil amendment with composts in relation to plant pathogens. Australasian Plant Pathology 40(2): 157–167. Doi: 10.1007/s13313-010-0025-7.

Paramasivan, M., Mohan, S., Muthukrishnan, N., & Chandrasekaran, A. (2013). Degradation of oxalic acid (OA) producing Sclerotium rolfsii (Sacc.) by organic biocides. Archives of Phytopathology and Plant Protection 46(3): 357-363. Doi: 10.1080/03235408.2012.738520.

Raj, H. & Sharma, S. D. (2009). Integration of soil solarization and chemical sterilization with beneficial microorganisms for the control of white root rot and growth of nursery apple. Scientia Horticulturae 119(2): 126-131. Doi: 10.1016/j.scienta.2008.07.025.

Rakh R.R., Raut, L., S., Dalvi, S. M., & Manwar, A. V. (2011). Biological control of Sclerotium rolfsii, causing stem rot of groundnut by Pseudomonas cf. monteilii 9. Recent Research in Science and Technology 3(3): 26-34.

Rakholiya, K.B. (2010). Efficacy of fungicides against Trichoderma harzianum and Sclerotium rolfsii. International Journal of Plant Protection 3(2): 406-407.

Reino, J.L., Guerrero, R. F., Hernández-Galán, R., & Collado, I. G. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev. 7: 88-123. DOI:10.1007/s11101-006-9032-2.

Shahid, I., Rizwan, M., Baig, D. N., Saleem, R. S., Malik, K. A., & Mehnaz, S. (2016). Secondary Metabolites production and plant growth promotion by Pseudomonas chlororaphis and P. aurantiaca strains isolated from cactus, cotton, and para grass. J. Microbiol. Biotechnol. 27(3): 480–491. Doi: 10.4014/jmb.1601.01021.

Soesanto, L., Mugiastuti, E., & Rahayuniati, R. F. (2010). Kajian mekanisme antagonis Pseudomonas fluorescens terhadap Fusarium oxysporum pada tanaman tomat in vivo. J. HPT Tropika 10(2): 108-115.

Soesanto, L., Mugiastuti, E., & Rahayuniati, R. F. (2013). Aplication of Pseudomonas fluorescens P60 liquid formulation to suppress viral diseases on red chili. Jurnal Fitopatologi Indonesia 9: 179-185. Doi: 10.14692/jfi.9.6.179. [In Bahasa Indonesia].

Soesanto, L., Mugiastuti, E., & Manan, A. (2019). Raw secondary metabolites of two Trichoderma harzianum isolates towards vacular streak dieback on cocoa seedlings. Pelita Perkebunan 35(1): 22-32.

Songvilay, P., Groenewald, J. Z., Vongphachanh, P., Sayapattha, S., Chittarath, K., Crous, P. W., & Burgess, L. W. (2012). First report of Sclerotium rolfsii in the Lao PDR. Australasian Plant Dis. Notes. Doi: 10.1007/s13314-012-0085-3.

Stolp, H., & Gadkari, D. (1983). Nonpathogenic members of the genus Pseudomonas. In: Starr, M. P., Troper, H. G., Ballows, A., & Schiegel, H. G.. (eds.). The Prokaryotes A Handbook on Habitat, Isolation and Identification of Bacteria. Springer-Verlag. New York.

Shukla, P., Walia, S., Ahluwalia, V., Parmar, B.S., Nair, M.G. (2012). Activity of alkanediol alkanoates against pathogenic plant fungi Rhizoctonia solani and Sclerotium rolfsii. Nat Prod Commun. 7(9): 1219-22.

Thiessen, L.D., & Woodward, J. E. (2012). Diseases of peanut caused by soilborne pathogens in the Southwestern United States. International Scholarly Research Notices Agronomy, Article ID 517905, 9 pages. Doi: 10.5402/2012/517905.

Tran, N. H. (2010). Using Trichoderma species for biological control of plant pathogens in Vietnam. J. ISSAAS. 1 (16) : 17–21.

Trapet, P., Avoscan, L., Klinguer, A., Pateyron, S., Citerne, S., Chervin, C., Mazurier, S., Lemanceau, P., Wendehenne, D., & Besson-Bard, A. (2016). The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron-deficient conditions. Plant Physiol. 171(1): 675-693. Doi: 10.1104/pp.15.01537.

Vinale, F., Flematti, G., Sivasithamparam, K., Lorito, M., Marra, R., Skelton, B. W., & Ghisalberti, E. L. (2009). Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J. Nat. Prod. 72: 2032–2035. DOI: 10.1021/np900548p.

Zachow, C., Grosch, R., & Berg, G. (2011). Impact of biotic and a-biotic parameters on structure and function of microbial communities living on sclerotia of the soil-borne pathogenic fungus Rhizoctonia solani. Appl Soil Ecol. 48(2): 193–200. Doi: 10.1016/j.apsoil.2011.03.006.


Article Metrics

Abstract view : 188 times
PDF - 95 times


  • There are currently no refbacks.